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Abstract The phonon Boltzmmn equation is considered in its general form in the presence of 
mass defect interactions and boundary scanering. A variational method is applied to calculate 
the phonon thermal conductivity for a non-metallic slab of finite thickness and fixed Iempemures 
at its two faces. In companson with previous work the present study has the advantage that 
the different phonon polarizations are taken into account. Moreover, it  has been shown that the 
operalor involved in the study is positive definite which in turn. implies that the variational 
method yields an upper bound on the phonon thermal conductivity. 

1. Introduction 

It is characteristic of most theoretical work on the phonon thermal conductivity that one 
considers only the initial deviation from a phonon equilibrium distribution which is assumed 
to exist. The phonon Boltzmann equation can consequently be linearized by retaining terms 
up to the first order in the initial deviation. However, at very low temperatures the effect of 
three-phonon normal and umklapp processes is very weak and can be completely ignored. 
The elastic character of the dominant mass defect and boundary scattering does not tend 
to set up an equilibrium distribution at these temperatures. Accordingly the Boltzmann 
equation cannot be linearized in the above sense and the general form has to be used 
instead. Parrott [l] and Williams [Z] investigated this problem for a non-metallic slab of 
thickness L and temperatures TO and T, at its faces. The phonon-scattering mechanism was 
taken to be due to mass defect interactions and boundary scattering alone. The general form 
of the collision operator of mass defect scattering as well as the exact boundary conditions 
were taken into consideration. Parrott [ I ]  obtained the solution by using a series of integral 
operators while Williams [2] applied a variational principle. In both treatments. however, 
phonon polarization has been entirely neglected and the calculations were performed for 
one average branch. 

The aim of the present work is to re-investigate the problem considered by Parrott [l] 
and Williams [2] by taking into account the different acoustic phonon polarizations and to 
deal with the resulting complexity. The complexity arises owing to the existence of two 
coupled integrodifferential equations instead of one equation of a much simpler structure 
in I1.21. The variational principle of Williams [21 has then been modified to obtain the 
solution and to calculate the heat flux and thermal conductivity. Furthermore, in [Z] the 
sign of the operator involved in the variational method was not explored. Here we have 
shown that the more general operator of the present study is positive definite which, in turn, 
shows that the procedure yields an upper bound on the thermal conductivity. 
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The present work is arranged in the following way. In section 2 the two coupled 
integrodifferential Boltzmann equations which relate the distributions of transverse and 
longitudinal acoustic phonons are derived. The general form of the solution of these two 
equations is then given. The variational approach applied is consequently presented in 
section 3. The calculation of the heat flux and the thermal conductivity is considered in 
section 4 .  The two limiting cases in which mass defect scattering is much stronger or much 
weaker than boundary scattering are investigated in more detail. 

2. Solution of the general Boltzmann equation 

The general form of the phonon Boltzmann equation is given by 

where U and k are the phonon polarization and wavevector, respectively. Also, N ,  and U, 
are the number and group velocity of phonons in the mode v. (8Nu/,3r)lc is the rate of 
change in N ,  due to collisions. For mass defects, 

where the transition probability W," is defined by 

o. and e, are the angular frequency and polarization vector corresponding to the mode U. 
No is the number of unit cells and fi is the fraction of atoms of mass Mi.  If dispersion is 
neglected, the k-space is assumed to be isotropic and acoustic phonons are only considered; 
then 

- 
vu = v,k oy = u,k u = t , I  (4) 

where 5 is a unit vector in the direction of I C ,  and t and I refer to the transverse and 
longitudinal branches. Also, following Parrott [I] and Williams [Z] it will be assumed that 
the dimensions of the two faces of the slab are much larger than its thickness. They can 
thus be regarded as infinite planes and the variation in N ,  along the normal direction z may 
only be considered. The two equations which result by taking U 3 t. I in ( I )  and (2) can 
consequently be expressed in the form 
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where p = cos0 and 0 is the angle between k and the z axis which is chosen as the 
polar direction. The summation over k' on the left- and right-hand sides of the above two 
equations can be changed into integration over the Debye sphere in the usual manner, At 
low temperatures, the upper limit of the integration over k' can be taken to be equal to 
infinity and the resulting integral can be performed by using the delta function in (30). It 
can further be shown that 

which gives 

average(% . eV,)' = f (66) 

Consequently on using ( 6 4  and (66) respectively for the integrations on the left- and right- 
hand sides of equations ( 5 4  and (56) it follows after some manipulation that 

and 

where 

1 

No(k, z )  = LI12Nt(k. z, pL)) + c3N1(ck, z ,  p')ldp' = 2NP(k, z )  + c'N?(ck. z) (86) 

I 

@ ( k , z ) = /  N=(k,z,p ')dp'  a = t , l .  (8c) 
-I 

Also, lt and 11 are the mass defect scattering transverse and longitudinal mean free paths 
which are given by 

Q is the volume of the unit cell. It can further be shown from equation (9) that 

If we then integrate equations ( 7 4  and (76) with respect to p, replace k by ck in the 
second and use the first relation in (10) we find that 

/' kl2Nt(k, z, l ~ )  + c'Ndck. z, p)Idp = 0 (11) dz -I 
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which, in turn, implies that the quantity 
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is independent of z. The two quantities No(k. z) and J (k)  resemble the two quantities 
No(x) and J ,  respectively, introduced by Williams [Z] (equations (15) and (1 1)). If a single 
average polarization branch is considered the present quantities will be equal to three times 
those of Williams. Also, it will be shown in section 4 that J ( k )  is the only basic quantity 
needed for the calculation of the heat flux and thermal conductivity. 

Now equations (7a) and (7b) are two coupled linear first-order differential equations in 
2 which have to be solved subject to the boundary conditions 

for U = t, I .  A similar procedure to that used by Parrott [ I ]  can then be employed to express 
the solution of these two equations in the form 

and 

(15b). 

In [l] the analogous distribution function of the single average branch was obtained by 
using a series of integral operators. For large thicknesses Panott's [ l ]  result for thermal 
conductivity was found to be about 70% of the result obtained by the standard procedure. 
Williams 121 argued that this may be because Parrott's series might not converge in this 
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limit. Williams applied instead a variational method which has led to the conventional result. 
In the following section the modifications needed to apply Williams' variational approach 
to the present case will be considered. We start here by deriving suitable expressions for 
the two basic quantities N o ( k ,  z) and J ( k ) .  Substitution of (14) and (15) into (Sb), (8c) and 
(12) yields 

N O ( k .  z )  = X(k. z) + -- ' J L  No(k. z') [ , E ,  (-) + c4E1 (-)I dz' 
21,(k) 3u: 0 

where 

and E,(z) are the exponential integrals [3]. In the derivation of the above equations we 
have used the first relation in (IO) in addition to the relations 

N;(ck ,O)=N, ' (k ,O)  N ? ( c k . L ) =  N : ( k , L ) .  (1% 

Also the fact that J ( k )  is independent of z has been utilized. 

compared with To and TL. Also, Williams [2] defined 
P a "  [ I ]  and Williams I21 considered the case in which AT = To - TL is small 

T =  TO + TL) and hence TO = T + ;AT TL = T - ;AT.  (20) 

It CM thus be shown by using a Taylor expansion and retaining the first-order terms in AT 
that 

where 
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Following Williams 121, N,(k. z) can further be replaced by &(k,  z) where 

I F I Mikhail ami N E Hassanen 

N,(k, z) = 2fi.,(k) + $ATg.(k)&(k, z). (23) 

This, however, does not imply that an equilibrium distribution for the phonon system exists. 
Substitution of (23) in  (8b) gives 

N 0 ( k , z )  = 2 ( 2 + c 3 ) f i t ( k ) +  fATgt(kM(k,z) (24) 

where 

6 ( k .  L )  = 2 W ,  2) + c 3 h ( c k .  z). (25) 

The two relations f i ~ ( c k )  = &(k) and gl(ck) = g, (k)  have been used to obtain (24). It can 
consequently be shown that the equations analogous to (16) and (17)  take the form 

and 

3. Variational approach 

As has been previously pointed out, the evaluation of heat flux and thermal conductivity 
depends mainly on the basic quantity J ( k ) .  In this section, J ( k )  will be calculated by 
modifying the variational method used by Williams [ 2 ] .  The method will be applied to the 
case presented in equations ( 2 6 H 2 8 ) .  The more general equations (16)-(18) can also be 
used for such purpose but the calculations will be much more complicated. We first express 
equations (26)  and (27)  in the form 

ix4(k, Z) = Y ( k ,  Z) (29) 

and 

The inner product (, ) is defined by 
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and the operator i, by 

It is readily shown that the operator i, is symmetric with respect to the inner product ( , ) 
and thus 

F(@(z)) = 2 ( 3 ( ~ ) ,  Y(k, z)) - (@(z), ~ x @ ( z ) )  (33) 

is stationary about the value F(@(k. z)) = (@(k,z), Y(k, z)), where @(k, z) is the exact 
solution of (29) and @(z) is a variational trial function. The k-dependence of @(z) is 
dropped since the variation approach is concemed with studying the z-dependence. If we 
further assume that @(z) depends on one variational parameter (@(z) = at/r(z)), then 

F(@(z)) = (@(z), Y(k, z))'/(t/r(z). ~ x @ ( z ) ) .  (34) 

The inner product in equation (30) can then be replaced by the stationary value of F(@(z)) 
evaluated with a suitable choice of @(z). In this connection, one can easily show from (29) 
that @ ( k ,  z )  is odd in the sense that 

@(k, L - Z) = -@(k, z). (35) 

The trial function $(z) should satisfy the same property in order to resemble the exact 
solution. 

In the following we show that the operator i k  is positive definite with respect to the 
inner product (, ) for odd functions @(z) which satisfy (35). This point was not investigated 
by Williams [2]. We thus start by considering the simpler form of ix used by Williams [2] 
which can be obtained from (32) by taking U, ut U, 11 = lt 1 and c = 1. Hence 

and 

The second term in (376) is obtained by dividing the integrals in the second term of (37a) 
into four parts and then using the relevant transformations to change the integrals over the 
interval [ f L ,  L ]  to integrals over the interval [O, $L] .  It is readily shown that the second 
term of (37b) is negative ($(z)@(z') is positive for z ,  z' E [O,;L] owing to the argument 
used after equation (39)). One must, therefore, deal fwtter with the negative p u t  of this 
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term in order to prove the positive definite property of iiw). It can be shown after some 
manipulation and by using the relation @($L) = 0 that 
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Substitution of (38) in (37b) yields 

Here @ ( z )  is taken to be a simple odd function which increases or decreases continuously 
as z increases in the interval [0, L] .  It thus has one zero at z = i L .  It follows consequently 
that the second part of (39) is positive since @ ( z )  and @(?) have the same sign for 
z. 2’ E [O. $L]. Furthermore d@(z‘)/dz’ is an even function which has a different sign 
from @ ( z ‘ )  for z’ E [O, $ L ] .  Accordingly, the first part of (39) is also positive and therefore 
iiW’ is positive definite. 

As regards the positive definite property of the present more complicated operator ik 
(equation (32)), i t  can be proved in the same manner. It can be finally shown that 

(40) 

The right-hand side is positive, and accordingly i, is positive definite. This, in turn, 
indicates that the exact solution of the Boltzmann equation maximizes F ( @ ( z ) )  and 
accordingly minimizes J ( k )  and the thermal conductivity. The procedure thus yields an 
upper bound on the thermal conductivity. 

Williams [2] chose @ ( z )  in the form 

$ ( z )  = a(2z - L) (41) 

where the k-dependence of @(z) may appear in the variational parameter a .  This form 
possesses all the above-mentioned properties and will thus be used in the present work. It 
can consequently be shown after some lengthy calculations that 

J ( k )  = iATgt(k) 2 + cz + 4E,( i )  + 2cZE3(cL) + (42) 



4. Calculation of the heat flux and the thermal conductivity 

The phonon heat flux is given by [4] 

For the second part, we change the integration over k into integration over K = k/c and 
replace k’ by k in the resulting form. It then follows by using (12) that 

Q=-/ J(k)k3dk 
4ir2 0 

(45) 

Equation (45) gives the relation between the heat flux and the basic quantity J(k).  If we 
consequently substitute from (42) and (22) into (45) we obtain 

G ( i ) d k  
hZ$AT Smk4 exp(hu,k/kBT) 

= 16n2ksT2 o [exp(hu,k/kBT) - 112 
where 

212 

12 
G ( L )  = 2 +  c2 +4E3(L) + 2c2E3(ct) + 1. (47) 

In the above form, Q has been expressed in terms of ut,  lt(k) and the ratio c = U , / U I .  An 
alternative form can also be obtained in a similar manner which gives Q in terms of ulr 
$(k) and c .  

Williams [2 ]  considered the two limiting cases in which the slab thickness is much 
larger or much smaller than the mean free path. The first case represents the situation in 
which the effect of mass defect interactions is much stronger than that of boundaries while 
the second stands for the situation in which the effect of the boundaries outweighs that of 
mass defect scattering. In the present work these two limits are represented by 

L >> 1 i.e. L >> l,(k) > ll(k) (484 

and 

i’ << 1 i.e. L << ll(k) e l,(k) then << I (486) 
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where fi = L/&(k). In equations (48) we have utilized the fact that ut < y and hence 
IJk) > Il(k). Conditions (48) should, however, be satisfied for the whole effective range of 
integration over k. Since the integrand in equation (46) decays very rapidly at large values 
of k the integral can be cut at a cemin maximum value k ,  which is much less than the 
Debye radius at low temperatures. Condition (486) can then be satisfied if L << I,(kma). On 
the other hand, condition (48a) cannot be satisfied for points in the neighbourhood of k = 0 
for any large L ,  owing to the k-4-dependence of lt.l(k). This point was not investigated by 
Williams [2] and was dealt with later by Simons [5 ]  by applying a procedure analogous to 
that used by Mikhail and Simons [6,7] for similar problems. 

In the case in (48a) we first follow Williams and suppose that (48a) can be satisfied 
regardless of the k-dependence of lt,l(k). For the present calculations it can be shown after 
some algebra that 

I F I Mikhaif and N E Hassunen 

8 
C(.L)= 1 ( 2 + ~ ) .  

3 L  

Substitution of (49) in (46) yields 

(49) 

The thermal conductivity is consequently given by 

where s,(k) = I o ( k ) / v o  and it stands for the relaxation time of mass defect scattering. 
Equation (51) is identical with the first term of the Callaway model [8,9] which results 
owing to resistive processes. If we further substitute for L (k )  from (9). then K + 00 in 
agreement with the conventional result when the phonon-scattering mechanism is only due 
to mass defects. 

In the more accurate treatment of Simons [5] the integral in equation (46) was divided 
into two parts. For the first part the following expansion has been used [IO]: 

If the same approach is employed, it can be finally shown that 

subject to the condition 

L >> &(PO (53b) 

where pr = kBT/hut and C(<) is defined by (47). Equation (53a) takes the same form as 
the result of Simons [SI but with a different definition for G ( 0 .  The integral involved in 
( 5 3 4  is finite since lim~,,[G(~)] = (8/3<)(2+c) (equation (49)) while G(0) = 2(2+cz) 
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(see equation (56) below). If we further suppose that the thermal conductivity K can still 
be defined as Q/(AT/L),  then 

which is finite for a slab of finite thickness. This gives a finite expression for the thermal 
conductivity when the phonon-scattering mechanism is dominated by mass defect scattering 
unlike the conventional result. 

In the case in (486) (E << I )  we utilize the recurrence relation 

zE.(z) +nE,+,(z) = exp(-z) n = 1.2.3, .. . (55)  

and expand the involved quantities in powers of i. It can be finally shown that 

G ( i )  = 2(2 + c2)  (56) 

and 

hZu:AT j -  k4exp(hvtk/ksT) 
( 2  + 2) dk. = 8n2kBT2 p [eXp(hU,k/ksT) - 112 

Moreover, by taking K = Q/(AT/L), then 

dk h2 CO k4 exp(hu,k/ksT) 
~ u ‘ r u b ~  [exp@u,k/ksT) - 112 

K =  
6n2ksT2 o. 

where 

0 E t ,  I. 3L 
S,b = - 

4v, 

Again equation (58) is identical with the first term of the Callaway model when the different 
phonon polarizations are taken into account. Also, T,,b defines a relaxation time when 
phonon scattering is only due to the effect of boundaries. It takes the same form as the 
conventional relaxation time of boundary scattering [ I l l  but with an effective specimen 
dimension Le# = aL. where L is the actual dimension. According to our knowledge this 
seems to be a new result which has not been noted by earlier workers. 

5. Conclusions 

The solution of the general Boltzmann equation obtained in the present work in the presence 
of mass defect and boundary scattering alone is a generalization for the results of earlier 
treatments by taking into consideration the different phonon polarizations. The variational 
approach applied has enabled us to deal with the resulting complexity. It further has the 
advantage that it confirms in a precise way that the calculated thermal conductivity is an 
upper bound on the exact value. The procedure yields a new form for the boundary scattering 
relaxation time when the phonon-scattering mechanism is dominated by boundary effects 
as well as a finite expression for the thermal conductivity when the effect of mass defect 
interactions is much seonger than that of boundary scattering. 
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